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Abstract

We address memory performance issues observed in Blue Gene Linux and discuss the design and

implementation of “Big Memory”—an alternative, transparent memory space introduced to eliminate the

memory performance issues. We evaluate the performance of Big Memory using custom memory bench-

marks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4096 nodes. We

find that Big Memory successfuly resolves the performance issues normally encountered in Blue Gene

Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better

scalability than does the lightweight compute node kernel designed solely for high-performance applica-

tions. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically

improves the performance of certain I/O node applications as well. We demonstrate this performance

using the central processor of the LOw Frequency ARray radio telescope as an example.

Keywords: Linux, Blue Gene, OS kernel, memory performance, TLB
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1 Introduction

The Blue Gene architecture [9, 14], developed by IBM, is one of the most successful contemporary mas-

sively parallel computer architectures, thanks to a high-speed interconnect, a highly scalable design, and

a very low power consumption compared to other supercomputers. Blue Gene machines normally run a

dedicated compute node kernel (CNK) [15] on the compute nodes. CNK is essentially a microkernel that

supports only one user thread per CPU core and provides a simplified, offset-based mapping from physical

memory to the virtual address space. This design keeps the kernel small and simple; more importantly, since

Blue Gene lacks hardware to handle translation lookaside buffer (TLB) misses efficiently, it maximizes the

memory access performance, as well as the floating-point performance. It also simplifies the programming

of hardware devices, in particular the DMA engine discussed later.

Unfortunately, the simplicity of the design is also an obstacle; it brings an inflexibility and a lack of

features that are generally taken for granted in more general-purpose operating system kernels, such as mul-

titasking and time sharing. This situation prompted us to replace CNK with a Linux kernel as a part of the

ZeptoOS project [20], in an effort to create a fully open software stack to enable independent computer sci-

ence research on massively parallel architectures, enhance community collaboration, and foster innovation.

In previous publications related to ZeptoOS, we focused on operating system jitter [2, 4] and on I/O

forwarding [11]. This paper focuses on the performance of our Linux-based ZeptoOS compute node kernel,

with an emphasis on memory management. In the remainder of this section, we outline the key character-

istics of the Blue Gene hardware design and their consequences for the software stack (both CNK and the

ZeptoOS one). We focus on the Blue Gene/P (BG/P) architecture [10] introduced in 2007 to replace the

original Blue Gene/L design [14].

Blue Gene racks consist of two kinds of nodes: compute nodes, running the application code, and I/O

nodes, responsible for system services such as file I/O. These two types of nodes feature the same hardware;

however, the available interconnects are different. The primary interconnect available on the compute nodes

is a 3D torus network, used for high-performance point-to-point communication. A collective network is also

available for more sophisticated operations; it doubles as a file I/O backbone connecting compute nodes with

I/O nodes. Unlike the compute nodes, which normally run CNK, I/O nodes run a Linux kernel. I/O nodes

also have a 10 GbE link to connect them to file servers, login nodes, and the service node. The only practical

means of communication between compute nodes and the outside world is through the I/O nodes, using I/O
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forwarding.

We chose Linux as the foundation of our ZeptoOS kernel for the compute nodes because of its openness

and popularity, but our decision was made easier by the fact that Linux already ran on the nearly identical

I/O nodes. Only minor changes to the I/O node kernel itself were needed to boot it on the compute nodes.

However, a number of far-reaching changes were required to make it useful. For example, we had to replace

the CNK-specific IBM I/O forwarding and job control software with ZOID [11]. ZOID enables access

to remote file systems from the compute nodes running Linux, but it also provides an interactive login

capability to the compute nodes from the outside, which proved invaluable in further software development.

Internally, BG/P nodes use PowerPC 450 CPUs—a quad-core, 32-bit design with SMP support, running

at 850 MHz. Each processor core has a dual-pipeline floating-point unit with fused multiply-add (FMA)

instructions. The peak floating-point performance of the whole CPU is 13.6 Gflops. Each core has a 32 kB1

L1 instruction cache and a 32 kB L1 data cache (the latter featuring a snoop filter to provide cache coherency

between cores). The peak fill rate is 6.8 GB/s with a latency of 4 CPU cycles. The L2 cache is smaller than

the L1 and serves as a stream prefetching buffer. The CPU has a common 8 MB L3 cache with a latency of

approximately 50 CPU cycles. Nodes have either 2 GB or 4 GB of main memory. The main store bandwidth

is 13.6 GB/s with a latency of approximately 100 CPU cycles.

At the time of writing, PowerPC 450 is not a component available separately on the market; it can be

purchased only as part of a Blue Gene/P system. Consequently, a stock Linux kernel does not have the

support needed to make Linux boot on that CPU. However, starting with Blue Gene/P, IBM provides the

necessary patches to enable Linux to work on this processor. Regular 32-bit PowerPC executables run well

on a BG/P Linux kernel; however, executables compiled specifically for BG/P using a patched GNU C

compiler might not work on other 32-bit PowerPC processors because of the custom BG/P FMA instruction

set.

Because of its embedded systems origins, the processor has only 64 TLB entries per core. Even worse,

TLB misses must be handled in software, inside the Linux kernel, with a cost of a few hundred CPU cycles

(0.2 to 0.3 µs). Therefore, with the default PowerPC Linux page size of 4 kB, if the memory is accessed ran-

domly, the working set of the program must not be larger than 256 kB before the performance significantly

degrades. The processor itself supports various page sizes ranging from 1 kB to 1 GB. Pages of different

sizes can be used simultaneously; unfortunately, the Linux kernel lacks the flexibility needed to take ad-

1Throughout this paper, we use kB, MB, or GB in the context of memory size; 1 kB equals 1,024 bytes.
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vantage of this feature. We have experimented with increasing the system page size to 64 kB; we show the

results later in the paper. Unfortunately, this approach is not really an option on the I/O nodes because the

legacy software running there (in particular, the GPFS file system client code) works only with 4 kB pages.

CNK, on the other hand, takes full advantage of the hardware and statically maps all the system memory

using large TLB entries, thereby eliminating TLB misses.

Unlike its predecessor used in Blue Gene/L, the PowerPC 450 has a coherent L1 data cache; the Pow-

erPC load and reserve instruction works between cores, and coherent pages are available. However, the

tlbsync instruction is not supported, so the Linux kernel has to use an interprocess-interrupt (IPI) to

synchronize software TLB management. The BG/P Linux kernel is configured for a virtual memory split

of 3 GB user space and 1 GB kernel space, with HIGHMEM enabled by default. BG/P-specific additions

primarily include various network drivers.

In Blue Gene/P, the torus network between the compute nodes has been enhanced with a DMA engine.

The engine can deal only with physical addresses; a software layer has to translate virtual addresses to phys-

ical ones. This process is simple with IBM’s CNK, where contiguous virtual addresses are also contiguous

in physical space. Unfortunately, with paged memory used in Linux, this is not the case—the translation is

a lot more complex, and fragmented physical address space seriously limits the size of DMA operations,

hurting performance.

Given the problems caused by paged memory on BG/P, we decided to investigate an alternative memory

management scheme.

2 Related Work

Linux does provide support for large memory pages, through the hugetlbfs [7] mechanism. Using these

pages dramatically reduces the number of TLB misses, improving performance. However, this feature is not

transparent—applications need to invoke the mmap system call explicitly to make that memory available,

and by then it is too late to use the memory for segments such as application text, heap, or stack.

Shmueli et al. [19] evaluated Linux on the compute nodes of Blue Gene/L and identified TLB misses

as a major source of node-level performance degradation. To mitigate the problem, they used hugetlbfs.

They also employed libhugetlbfs [8], a wrapper library that semi-transparently maps application’s text, data,

and heap to a memory area backed by hugetlbfs. Their approach allowed Linux to achieve a performance
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comparable to CNK, both at the node level and systemwide. However, hugetlbfs does not eliminate the TLB

misses completely, so they can still be a performance problem for some applications. This approach also does

not help with programming the DMA engine on BG/P. Moreover, the approach requires dynamic linking,

while on Blue Gene almost all executables are statically linked, since this is the compiler default on that

platform. The authors also found that dynamic linking introduced an overhead on accessing floating-point

constants.

Navarro et al. [16] designed an effective transparent superpage management system that utilizes larger

physical pages to reduce TLB misses and implemented it in FreeBSD on the Alpha processor. When a

page fault occurs, the size of the superpage is chosen, and a set of contiguous page frames that covers

the superpage is allocated from the buddy allocator. Fragmentation control and superpage promotion are

part of their design. They evaluated their implementation with both benchmarks and realistic workloads

and observed a 30% to 60% performance improvement. They targeted a relatively general-purpose usage,

however, whereas we are focusing on high-performance applications on massively parallel machines.

3 Early Performance Evaluation

In this section, we present the results of a number of performance measurements we made on a mostly

unmodified BG/P Linux kernel.

A popular misconception is that Linux would not be suitable as a compute node kernel because of a high

level of operating system noise. We have disproved this notion on several older platforms [2, 4].

Figure 1 shows the results obtained by using our OS noise measurement benchmark Selfish [3] on BG/P.

Essentially, the benchmark is a tight, busy loop that records anomalies in its execution time caused by OS

interrupts (i.e., system noise). In this case, the Linux kernel with 4 kB pages and 100 Hz timer interrupt used

only 0.027% of the CPU time, leaving 99.963% of the cycles to the benchmark. The interruptions are small

and predictable, making them fairly easy to control.

Table 1 also shows that Linux OS noise is low. The FPU benchmark is basically a tight loop of FMA

instructions. The benchmark kernel easily fits in the L1 instruction cache. On IBM’s CNK, the result matches

the theoretical peak performance of BG/P floating-point unit per core (4 flops × 850 MHz yields 3.4 Gflops).

Linux is only 0.09% slower, which is higher than the noise level measured earlier, probably because the noise

measurement experiment does not account for noise events smaller than 1 µs.
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Figure 1: Noise on BG/P Linux

Table 1: CNK vs Linux: FPU benchmark

CNK (Gflops) Linux (Gflops) Performance Loss (%)

3.400 3.397 0.09

3.1 Memory Benchmarks

We evaluated memory performance using two benchmarks: a streaming copy benchmark and a random

memory access benchmark. Under Linux, we tested using two different page sizes: 4 kB and 64 kB.

The streaming copy benchmark is simple: it allocates a memory buffer, divides it in two, and copies

data from one region to the other. The results for several different buffer sizes can be found in Table 2.

With a 16 kB buffer size, which fits well in the L1 cache, the Linux kernel incurs approx. 1.2% performance

loss. This is higher than the overhead measured earlier; since no TLB misses occur during the execution

of this benchmark, we suspect that Linux timer interrupts thrash the L1 cache. With a 256 kB buffer size,

which is the maximum size that 4 kB TLB entries can cover (64 TLB entries × 4 kB), we observe that the

performance under Linux with 4 kB pages drops. We do not see any significant performance drop at 4 MB,

even though this is the maximum size that 64 kB TLB entries can cover. The reason is that the overhead of a

TLB miss becomes very small: updating a TLB entry takes approx. 0.2 µs, while loading a 64 kB page takes

approx. 60 µs, which yields a 0.3% performance loss. A TLB miss also thrashes several data cache lines,

thus adding more overhead, so the performance loss we have observed is within our expectations.

Table 3 presents the results of our random memory access benchmark. This benchmark reads data from a
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16 kB, 256 kB, 4 MB, or 16 MB memory region in a random fashion. The results show that the performance

drops dramatically at 256 kB on Linux with 4 kB pages and at 4 MB on Linux with 64 kB pages. Many

applications deal with buffers larger than 4 MB, so clearly, a more radical solution is needed than a mere

increase of the page size by an order of magnitude.

Table 2: CNK vs Linux: Streaming Copy Benchmark

Size CNK Linux 4 kB Linux 64 kB Performance Loss
(MB/s) (σ) (MB/s) (σ) (MB/s) (σ) 4 kB (%) 64 kB (%)

16kB 2158.00 (0.03) 2131.67 (0.30) 2130.81 (0.40) 1.22 1.26

256kB 1037.13 (0.03) 993.04 (6.84) 1031.44 (0.18) 4.25 0.55

4MB 1037.39 (0.00) 993.51 (1.81) 1028.49 (2.50) 4.23 0.86

16MB 1037.38 (0.02) 992.96 (1.73) 1028.08 (2.00) 4.28 0.90

Table 3: CNK vs Linux: Random Memory Acccess Benchmark

Size CNK Linux 4 kB Linux 64 kB Performance Loss
(MB/s) (σ) (MB/s) (σ) (MB/s) (σ) 4 kB (%) 64 kB (%)

16kB 810.29 (0.00) 807.34 (0.23) 807.90 (0.08) 0.36 0.29

256kB 810.36 (0.00) 67.16 (0.00) 810.16 (0.03) 91.71 0.02

4MB 186.47 (0.00) 22.11 (0.13) 54.23 (0.02) 88.14 70.92

16MB 62.60 (0.00) 17.76 (0.00) 22.66 (0.00) 71.63 63.80

3.2 NAS Parallel Benchmarks – Serial

To study the single node performance under different loads, we ran NAS Parallel Benchmarks (NPB) [1]

version 3.3 in serial mode using the class A problem size. The executables were compiled using the IBM

XL compiler and we could use the same binaries for both CNK and Linux. The results are in Figure 2.

The IS result shows a large performance gap between CNK and Linux. This benchmark performs ran-

dom memory accesses on a larger buffer, so the performance loss is close to the numbers from Table 3.

Surprisingly, the CG benchmark on Linux with 64 kB pages runs faster than on CNK. We found that CNK

enables the L2 optimistic prefetch, while Linux does not. In this particular case, the prefetch results in a

performance loss. Brunheroto et al. [5] describe the L2 optimistic prefetch on Blue Gene/L and they confirm

that the prefetch negatively affects the CG, IS, and SP benchmarks.

3.3 System Calls

Table 4 shows a comparison of gettimeofday() performance. This is one of the benchmarks where Linux

outperforms CNK. In this experiment gettimeofday() is a system call on both CNK and BG/P Linux; we
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Figure 2: CNK vs Linux: NAS Parallel Benchmarks – Serial

don’t use a user space gettimeofday(). The cost of a gettimeofday() system call on CNK is almost eight

times higher than that on Linux.

We found that at least two factors contribute to this difference. First, CNK saves all possible registers

on system call entry, while Linux saves a minimum set. Additional register saves and restores not only

take time but also thrash the L1 cache; the impact on performance depends on how cache-intensive the

application is. Second, the gettimeofday() system call on CNK requires multiple, expensive 64-bit integer

operations to convert the CPU time stamp counter to the wall-clock time; under Linux, 64-bit operations are

not needed because the Linux kernel maintains the wall-clock time using the timer interrupt, so calculating

the time difference from the last tick update using 32-bit operations is sufficient. Even if we implement

gettimeofday() in user space on CNK, it costs approx. 230 CPU cycles (0.27 µs), although reading a 64-bit

time stamp counter itself costs only about 10 CPU cycles (0.01 µs).

Table 4: CNK vs Linux: System Call Performance

CNK (µs/call) Linux (µs/call) Performance Loss (%)

gettimeofday 3.91 0.51 −86.96

4 Big Memory

We first briefly discuss standard paged memory management. We then explain our approach using “Big

Memory.”

10



4.1 Standard Linux Memory Management

The Linux kernel is a virtual memory operating system. The main purpose of virtual memory is process

isolation, but virtual memory also provides other optimizations or functionality such as copy-on-write, file

caching, and memory swapping. Nowadays, virtual memory is considered mandatory in general-purpose

operating systems.

Figure 3 provides an overview of memory management in Linux. The address space of each process

consists of a set of virtual address ranges called virtual memory areas (VMAs). VMAs are created when a

new process is started; the mmap system call can also create a new VMA. Creating a VMA is not equivalent

to physical memory allocation; this takes place only on the first memory access within the VMA. Memory

access attempts outside the VMAs result in a memory fault. VMAs have access permissions associated with

them; incorrect access attempts result in memory faults as well.

Figure 3: Memory Management in Linux

On most modern processors, user programs run inside virtual address spaces. In other words, user pro-

grams cannot address physical memory directly—the processor always has to convert a virtual address to the

corresponding physical address. Page table entries (PTEs) are used for that purpose. The operating system

kernel is responsible for creating PTEs based on the VMAs and for storing them in memory in advance or

upon request. PTEs are stored in kernel space (in main memory), so accessing a PTE is simply an overhead.

To alleviate this overhead, modern processors cache recent address conversions in the translation lookaside

buffer. The TLB definitely improves memory access speed, but it is not a complete solution because TLB

entries are scarce. When a TLB miss takes place, a TLB entry needs to be loaded from a PTE.

The TLB entries associated with paged memory are flushed by the Linux kernel when the kernel switches
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to another process or when an associated VMA is removed. PowerPC Linux statically pins down a few TLB

entries to cover kernel memory space, so TLB entries associated with kernel memory are not flushed when

switching context.

4.2 Our Approach

Our basic idea is to provide applications with special memory regions that are covered by larger pages; we

refer to these regions as Big Memory. Unlike the hugetlbfs regions discussed in Section 2, which use pages

of intermediate size (2–4 MB) and only reduce the probability of TLB misses, Big Memory uses pages so

large that the TLB misses are eliminated while the process is scheduled in.

We focus on the compute node environment here; we do not consider a general-purpose solution. The

compute node environment has unique characteristics: a computational process tends to monopolize the

CPU execution unit, floating-point unit, memory, network, and other resources. In order to achieve peak

performance, a single computational thread per core is preferable, since the kernel has to save the current

context (all CPU registers associated with the current process, including double-floating-point registers in

the case of the PowerPC 450), load new context, and invalidate caches at context switching time, thereby

incurring substantial overhead, especially for CPU-intensive applications. Our approach is to allow only a

single computational process to run at a time, to have the Linux kernel pin down TLB entries to cover the Big

Memory area on the first access after the computational process has been scheduled in, and to remove them

when that process gets scheduled out (to keep the memory mapping private to the computational process).

Thus, an application does not suffer TLB misses when it accesses its Big Memory area.

Physical memory needed for the Big Memory area is reserved at boot time and is thus not available for

use by the kernel as regular, paged memory. It can be used only by a special computational process. This

dramatically reduces the complexity of the implementation.

Unlike the hugetlbfs-based solutions, our approach is fully transparent, requires no code changes to the

application, works with static executables, and covers all the application segments.

The Linux kernel automatically prepares the Big Memory area for a computational application. How

does the kernel determine which process should use Big Memory? Our solution is to alter the application’s

executable file; we use the e_flags field in the ELF header, which is reserved for processor-specific data.

We defined a custom flag and wrote a tool that toggles it. We refer to the executables with the flag set as

Zepto compute binaries, or ZCBs.
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4.3 ELF Binary Interpreter

To load a ZCB into Big Memory, we have modified the Linux kernel ELF binary interpreter, specifically,

the load_elf_binary function, which is invoked from the execve system call.

First, the ELF header is examined to see whether the binary being loaded is a ZCB. If it is, the kernel

sets a bit in the personality field in the task structure so that other kernel functions can easily determine

that the process is a ZCB by accessing the current variable.

Then the kernel creates a virtual memory range for Big Memory, using a simple offset mapping. We

currently use 256 MB pages to cover the application memory; in the future we will improve the granularity

of the Big Memory area by using a combination of different page sizes.

Once the Big Memory mapping is initialized, the kernel temporarily installs the Big Memory TLB

entries to copy the contents of both the command-line arguments and the environment variables to the

application stack. The kernel also loads the application’s text and data sections to Big Memory instead of

using the usual file mapping; the Big Memory mapping cannot be used for file mappings because it bypasses

the Linux page allocator (see below). In other words, the entire Big Memory area is populated when the

application binary is loaded.

4.4 Memory Manager for Big Memory

Our kernel reserves one VMA to cover Big Memory, and our internal memory manager takes care of memory

chunks within the Big Memory area (heap, stack and text). To keep track of the memory chunks for mmap

requests in Big Memory, the manager utilizes the kernel’s red-black tree—a structure normally used for

managing entire VMAs. The red-black tree is a self-balancing search tree, which can be searched in O(logn)

time, where n is the total number of elements in the tree.

The ZCB process address space is actually hybrid; it contains both regular paged memory and Big Mem-

ory (see Figure 4). Note that the Big Memory VMA does not have any associated PTEs, since the physical

addresses of memory in that region are fixed. The behavior of the mmap system call varies depending on

the request type. Anonymous, private requests, as used for large C library malloc calls, go to Big Memory

and are tracked by our internal memory manager. On the other hand, file-backed mapping requests—used,

for example, to support shared libraries—simply go to the regular Linux paged memory manager because

Big Memory cannot be used for file mappings.
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Figure 4: ZCB Process Address Space

4.5 Page Fault Handler

While we did not need to modify the TLB handler to implement Big Memory, we have added a hook to the

Linux page fault handler (see Figure 5). The added code first checks whether the current task is a ZCB. If

it is, the code checks whether the faulting address is within the Big Memory area; if so, it installs the Big

Memory TLB entries. Essentially, we get a single TLB miss on the first access after the process has been

scheduled in; the entries normally remain in place until the process is scheduled out again. With context

switches being fairly rare on the compute nodes, the entries are semi-static.

Figure 5: Big Memory Fault-Handling Flow

As shown in Figure 6, our Linux kernel partitions TLB entries in four groups: kernel mapping, paged

memory, Big Memory, and device mappings. The last two groups are specific to our implementation. Cur-

rently, the number of TLB entries required by Big Memory is proportional to the area size; for example,
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seven entries are needed to cover 1792 MB. The area size can be specified as a kernel parameter. Three TLB

entries are used to cover the kernel memory (kernel low memory, to be precise). For efficiency, we also pin

down some entries to cover BG/P-specific memory-mapped I/O devices: the collective network, the torus

DMA, the lockbox, the Universal Performance Counter, and the Blue Gene Interrupt Controller. The Blue

Gene Common Node Services code segment is also pinned.

Figure 6: TLB Partitioning in the Zepto Kernel

4.6 Other Kernel Modifications

Introducing a new concept invariably causes issues; the Big Memory implementation is no exception. Big

Memory breaks a number of assumptions in Linux memory management. A ZCB process is forked from

a regular Linux process; however, it cannot call fork itself, since the fork code depends on the copy-on-

write technique. The lack of fork may be acceptable when we focus on a high-performance compute node

environment; besides, this is still better than the CNK, which does not support fork at all and must be

rebooted to start another process.

Another issue is that the Big Memory mapping is strictly private and cannot be addressed from the

context of another process. The Linux kernel function access_process_vm did not work for ZCB pro-

cesses; this was an important issue because that function is used by the ptrace system call, on which

debugging tools such as strace and gdb depend. Luckily, the problem was relatively easy to fix; basically,

we now temporarily install the Big Memory mapping while the function is running, to allow other pro-

cesses to access the address space of the ZCB process. The mprotect system call is not implemented, so

debugging mechanisms that depend on mprotect will not work.
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5 Performance Evaluation

To evaluate single-node performance on Linux with Big Memory, we ran our memory microbenchmarks

and the serial implementation of the NAS Parallel Benchmarks. For parallel performance evaluation, we

used (the parallel implementation of) NPB and the Parallel Ocean Program (POP). The experiments were

performed on BG/P compute nodes with three different kernels: IBM CNK, Linux with 64 kB pages, and

our enhanced Linux with Big Memory support. We used the IBM XL compiler that supports PowerPC 450

instructions to compile the benchmarks.

Sequential binaries are compatible between the kernels. Parallel binaries, however, can be run only

on CNK and Linux with Big Memory because we cannot run MPI applications under Linux without Big

Memory due to limitations of IBM’s low-level communication library. To make the comparison as fair

as possible, we rebuilt communication libraries for CNK and Linux from the same sources: BG/P-patched

MPICH version 1.0.7 and Deep Computing Messaging Framework library (DCMF) version 1.0. Differences

between the kernels result in slightly different binaries of the communication libraries and consequently in

different parallel binaries, but the intermediate application object files were the same.

5.1 Memory Benchmarks

In Section 3.1, we showed the results of both the streaming copy benchmark and the random memory access

benchmark; Linux had serious performance issues with random memory access.

We ran the memory benchmarks on Linux with Big Memory (“Bigmem”). The results are in Tables 5

and 6; they show that Big Memory completely eliminates the performance problem of random access to

paged memory. Big Memory also slightly improves the streaming access pattern. Interestingly, we observe

that with 16 kB and 256 kB buffer sizes the performance loss with Big Memory is slightly larger than with

64 kB pages. We do not see any significant numbers of TLB misses in either case; instead, the slowdown is

caused by involuntary context switches. To keep Big Memory mapping private to the computational process,

the associated TLB entries are flushed and re-installed when the process is scheduled in and out. The cost of

removing Big Memory TLB entries is slightly higher than the cost of a single TLB miss. We also note that

the performance loss with the streaming access is proportional to the memory bandwidth: 0.6% performance

loss per GB/s.
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Table 5: CNK vs Linux: Streaming Copy Benchmark

Size CNK Linux 64 kB Linux Bigmem Performance Loss
(MB/s) (σ) (MB/s) (σ) (MB/s) (σ) 64 kB (%) Bigmem (%)

16kB 2158.00 (0.03) 2130.81 (0.40) 2130.15 (0.42) 1.26 1.29

256kB 1037.13 (0.03) 1031.44 (0.18) 1030.85 (0.06) 0.55 0.61

4MB 1037.39 (0.00) 1028.49 (2.50) 1031.67 (1.52) 0.86 0.55

16MB 1037.38 (0.02) 1028.08 (2.00) 1031.87 (2.03) 0.90 0.53

Table 6: CNK vs Linux: Random Memory Acccess Benchmark

Size CNK Linux 64 kB Linux Bigmem Performance Loss
(MB/s) (σ) (MB/s) (σ) (MB/s) (σ) 64 kB (%) Bigmem (%)

16kB 810.29 (0.00) 807.90 (0.08) 807.04 (0.06) 0.29 0.40

256kB 810.36 (0.00) 810.16 (0.03) 809.51 (0.47) 0.02 0.10

4MB 186.47 (0.00) 54.23 (0.02) 186.18 (0.01) 70.92 0.16

16MB 62.60 (0.00) 22.66 (0.00) 62.52 (0.00) 63.80 0.13

5.2 NAS Parallel Benchmarks – Serial

In Section 3.2, we showed the results of experiments with the serial implementation of NPB on both CNK

and paged Linux.

Figure 7 adds the results for Linux with Big Memory support. The results show that Big Memory clearly

improves the memory performance, e.g., the huge loss observed with the IS benchmark is gone. On the other

hand, the performance of the CG benchmark is now in line with the CNK, because unlike paged memory,

Big Memory uses the same optimistic prefetch configuration as the CNK. The SP benchmark performance

improves slightly with Big Memory Linux—we suspect the IBM XL compiler is responsible; the particular

binary that we compiled somehow negatively affected the performance only on CNK.
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Figure 7: CNK vs Linux: NAS Parallel Benchmarks – Serial
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5.3 NAS Parallel Benchmarks – Parallel

So far we have shown that the Big Memory implementation definitely improves memory performance of

applications on a single node. To evaluate parallel performance, we ran NPB in parallel mode on both CNK

and Linux with Big Memory support.

We ran all the NPB benchmarks on both 1024 and 4096 nodes (except IS, which supports at most 1024

nodes), in SMP mode (one process per node), using the class D problem size.

The results are shown in Figure 8. The performance is very close: Linux runs were slower in all cases

by 0.1–1.3%. The performance loss with the LU and CG benchmark increases at 4096 nodes, while the

loss with the MG, FT, SP, and BT benchmarks decreases. We have not yet done a detailed investigation of

these trends. We suspect that for benchmarks that improve as we scale up, the system noise might be hidden

by the hardware-assisted collective operations and DMA transfers (which are not affected by noise) or by

imperfectly balanced computations that force the majority of processes to wait doing nothing anyway. The

performance loss with the EP benchmark stays pretty much independent of the number of nodes, since the

benchmark is an embarrassingly parallel random-number generator. The 1.3% performance loss observed is

consistent with the loss we saw earlier with the streaming copy benchmark (see Table 5).
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Figure 8: CNK vs Linux: NAS Parallel Benchmarks – Parallel

5.4 Parallel Ocean Program

In addition to evaluating the performance using synthetic benchmarks, we wanted to confirm the results

using a real-world application. We chose the Parallel Ocean Program (POP) [12, 13], a wellknown parallel

application for studying the ocean climate system. POP is notorious for being sensitive to noise, so it seemed

like an excellent candidate.

We used unmodified POP version 2.0.1 from the POP website and the X1 benchmark data set. We
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ran it at the scale of 64 to 4096 nodes, in SMP mode. To be able to run using different node counts, we

adjusted the block_size_x and block_size_y parameters, keeping both max_blocks_clinic

and max_blocks_tropic at 1.

The results are shown in Figure 9. Somewhat surprising is the fact that Linux runs scale better than

CNK. We found that POP calls gettimeofday about 100,000 times on each node, irrespective of the

total number of nodes, resulting in a constant 0.36 second penalty on CNK due to the higher system call

overhead discussed in Section 3.3. As the run times decrease with increasing node count, this overhead

becomes ever more significant, eventually allowing Linux to overtake CNK if users are not aware of the

high cost of gettimeofday on CNK. To be fair in terms of memory subsystem comparison, we replaced

the gettimeofday() system call with a user space implementation and conducted an experiment on

4096 nodes. In this case Linux is 1.01% slower than CNK, which is less than shown, for example, in the

NAS EP benchmark on 4096 nodes. This result indicates that CNK system calls not only are slow but also

thrash the cache, since the absolute difference in run times under CNK using the two timer implementations,

which was 0.68 second, is almost twice the cost of the system calls measured using a synthetic benchmark.
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5.5 LOFAR Online Central Processing

We’ve shown in the previous sections that Big Memory performs well in several synthetic benchmarks on

the compute nodes. Our earlier work showed that, for some highly I/O bound applications, it makes sense to

run application software on the I/O nodes [11]. Since I/O nodes run Linux, these applications may similarly

benefit from Big Memory.

The LOw Frequency ARay(LOFAR) radio telescope is being built in the Netherlands [6]. In contrast

to current radio telescopes that employ custom-built hardware correlators, LOFAR uses a Blue Gene/P
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supercomputer. The LOFAR central processor is discussed in more detail elsewhere [18]; here we focus on

the performance of the real-time application running on the Blue Gene/P I/O nodes.

LOFAR stations stream UDP/IP data directly into the Blue Gene/P I/O nodes at a rate of slightly more

than 3 Gbps. These I/O nodes store the data in a main memory ring buffer, which is used to absorb network

delays or temporary hiccups in the processing pipeline. From here the data is transported to the compute

nodes, where all station pairs are correlated. Correlated data is transported back to the I/O nodes, which

forward it to a storage cluster for further processing. Poor main memory performance of the I/O node

running the unoptimized Blue Gene/P Linux kernel proved to be a major I/O bottleneck.
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Figure 10: Blue Gene/P I/O Node Tasks in LOFAR Online Processing

Figure 10 shows a breakdown of the tasks on the Blue Gene/P I/O nodes running the LOFAR online

processing application. We compare the performance of LOFAR’s main observation mode using a highly

optimized I/O node with Big Memory to the same observation mode running on an unoptimized I/O node.

We used a slightly modified ZeptoOS compute node kernel, including support for the Ethernet device

and excluding compute-node-specific devices like the torus network, on the I/O node. We reserved 1536 MB

of main memory as the Big Memory area for the ring buffer using six 256 MB TLB entries. The I/O node

application was also adapted to copy 128 bytes into the ring buffer at once, instead of one at a time, using

Blue Gene specific instructions. These two optimizations reduce the resources required to copy data into the

ring buffer by some 500%. A small memory benchmark that uses the same access pattern, but without the

optimizations mentioned before, proves that half of this gain can be directly attributed to Big Memory(see

Table 7).

Table 7: I/O Node Memcpy Performance

Unoptimized Big Memory Performance
(MB/s) (MB/s) increase (%)

212 505 251

The access pattern of the LOFAR I/O node application is susceptible to performance hits caused by
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TLB misses. Data must be read in such a way that a TLB miss is almost guaranteed. With the stock I/O node

kernel, the I/O node processor was unable to achieve our throughput requirements. Preventing TLB misses

for at least part of the application, combined with a low-overhead, high-performance I/O node to compute

node protocol [17], allowed us to reduce CPU load considerably, increasing I/O node performance to well

beyond our original requirements.

6 Conclusions

This paper presented the implementation of Big Memory support for BG/P Linux—a transparent, flat mem-

ory space for computational processes. Big Memory addresses two major issues encountered when attempt-

ing to run high-performance code on the BG/P Linux: poor memory performance caused by TLB misses

handled in software, and the difficulties of writing an efficient communication stack caused by the limitations

of the BG/P torus’ DMA engine.

Our OS noise measurement benchmark shows that Linux kernel with 4 kB pages and 100 Hz uses only

0.027% of the CPU time. The FPU benchmark ,which is a tight loop of FMA instruction, suffers 0.09% of

the performance loss compared to CNK. We think that the 0.09% loss is due to the time spent executing the

OS tick interrupt handler.

Our experiments have shown that memory benchmarks running under a standard Linux kernel with 4 kB

pages suffer up to 92% of performance loss compared to CNK. Increasing the Linux kernel page size to

64 kB narrows the gap; the worst case performance loss drops to 71%. Once we introduce Big Memory

support, the worst case performance loss drops to just 1.3%.

We ran NAS Parallel Benchmarks at up to 4096 nodes and confirmed that Linux has no problems at

this scale. In fact, with the majority of the benchmarks, the performance loss decreases with an increasing

total number of nodes. We also ran the Parallel Ocean Program (POP) and the results show that for this

application Linux scales better than does CNK. We found that the high overhead of system calls under CNK

is responsible.

Employing Big Memory on the I/O nodes was instrumental in reducing the I/O node CPU resources

required for LOFAR online central processing. A 500% performance increase was observed in key parts of

the application, allowing the I/O nodes to achieve their required throughput.

Our modifications to the Linux kernel are relatively small, principally because we focused exclusively on
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the requirements of computational processes, rather than trying to solve the problem in a generally applicable

way, which would have been far more complicated. We maintain two versions of Linux kernel, and we found

porting the Big Memory patches between the kernels to be straightforward.

As of this writing, many contemporary parallel architectures use commodity CPUs instead of designs

dedicated to computational environments. IBM Blue Gene/P uses IBM PowerPCs, Cray XT5 uses AMD

Opterons, and IBM Roadrunner uses both the Opterons and IBM Cells that contain a PowerPC and special-

purpose cores, for example. The memory management units in these processors are essentially designed to

support a highly multitasking environment. It would be interesting if future designs had hardware support

for computational process address space similar to the Big Memory area that we implemented, to allow for a

seamless coexistence of high-performance applications and standard Unix processes on the compute nodes.

Along with the Big Memory implementation, we came up with the idea of a special process that the

kernel treats differently from other processes. In the case of Big Memory, the kernel creates a different ap-

plication address space, and we showed that this idea works for compute nodes. We have also experimented

with other uses of this feature, such as disabling nonessential interrupts in order to reduce system noise when

a computational process gets scheduled in.

Our current implementation is suitable for benchmarking and simple applications. As of this writing,

only one MPI rank per node is supported; applications have to use threads in order to exploit all four cores.

Internally we have already extended Big Memory to support four processes per node, but the communication

stack is not ready yet for this mode at this point; we will eliminate this limitation as soon as possible. We

also need to make several improvements in the quality of implementation, such as the granularity of the Big

Memory area. So far, we have not observed any parallel performance degradation caused by OS noise up to

4096 nodes. Confirming this situation at very large scales and investigating why OS noise does not seem to

affect the HPC applications will be part of our future research.
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